
1

SUMMARY OF ANSI X9.63
Public Key Cryptography for the Financial Services Industry:

Key Agreement and Key Transport using Elliptic Curve Cryptography

1. Scope

ANSI X9.63 defines key establishment schemes that employ asymmetric cryptographic
techniques. The arithmetic operations involved in the operation of the schemes take place in the
algebraic structure of an elliptic curve over a finite field. Both key agreement and key transport
schemes are specified. The schemes may be used by two parties to compute shared keying data
that may then be used by symmetric schemes to provide cryptographic services, e.g. data
confidentiality and data integrity.

2. Contents

The asymmetric key establishment schemes in ANSI X9.63 are used by an entity U who wishes
to establish a symmetric key with another entity V. Each entity has at least one elliptic curve key
pair. If U and V simultaneously execute a scheme with corresponding keying material as input,
then at the end of the execution of the scheme, U and V will share keying data. The keying data
can then be used to supply keys for symmetric algorithms.

ANSI X9.63 specifies a variety of asymmetric key establishment schemes. Eleven key agreement
schemes and two key transport schemes are provided in the document. A variety of schemes are
specified because of the wide variety of services that it may or may not be desirable for a key
establishment scheme to provide, depending on the environment in which the scheme is going to
be used.

The standard also contains specifications for:
• Elliptic curve domain parameter generation and validation
• Key pair generation and public key validation
• Challenge generation
• Diffie_Hellman primitive
• MQV primitive
• Cryptogrpahic hash
• Key derivation function
• MAC calculation
• Encryption transformation
• Signature scheme.

In additon, for each scheme specified in the standard, an assessment of the security that is
afforded by the scheme is provided.

2

3. Crypographic Ingredients

3.1 Elliptic Curve Keying Material
The keying material needed to perform key establishment or key transport as specified by this
standard includes a set of domain parameters and one or more elliptic curve key pairs.

The domain parameters include:
• q the number of elements in the field
• a,b elements of Fq that define an elliptic curve E over Fq

• G a distinguished point on an elliptic curve that is the base point or generating point
• n the order of the base point G
• h the co-factor (the number of points on the curve, divided by n)

The domain parameters may be distributed, for example, in a public key certificate. Two classes
of domain parameters may exist: static domain parameters or ephemeral domain parameters.
Static domain parameters may be used with either static or ephemeral keys. Static domain
parameters are designated with a subscript of s when ephemeral domain parameters are also
involved in the key establishment scheme (i.e., qs, as, bs, Gs, ns, hs). Ephemeral domain
parameters are used with ephemeral keys and are designated with a subscript of e (i.e., qe, ae, be,
Ge, ne, he).

An elliptic curve key pair consists of a private key d, and a public key Q. Two classes of key
pairs may be used in a scheme: static key pairs (ds, Qs) and ephemeral key pairs (de, Qe). Static
key pairs are longer-lived; the public key from a static key pair (Qs) may be included in a public
key certificate. Ephemeral keys are shorter lived (e.g., for the duration of a message or a
communication session).

3.2 Domain Parameter Generation and Validation

ANSI X9.63 provides primitives for both domain parameter generation and validation. The
primitives differ depending on the characteristics of the underlying field, i.e., for the fields Fp

and F2
m. Domain parameter validation may be used to verify that the domain parameters satisfy

certain basic criteria (e.g., q=p is an odd prime; a, b, xG, yG are integers in the interval [0, p-1];
etc.). Domain parameter validation could be performed by a Certificate Authority (CA) or some
other trusted party.

3.3 Key Pair Generation and Public Key Validation

ANSI X9.63 provides primitives for key pair generation and public key validation. Both static
keys and ephemeral keys may be generated using the same primitives. Public key validation may
be used to verify that an entity’s public key Q appears to satisfy certain basic criteria (e.g., Q is
not the point at infinity; xQ and yQ are elements in the field indicated by the domain parameters;
etc.). A static public key could be validated, for example, by a CA, a trusted party or a responder
in a key establishment protocol. An ephemeral public key might be validated by the responder in
a key establishment protocol.

3

3.4 Diffie-Hellman Primitive (dhp)

The Diffie-Hellman primitive is used to compute a shared secret value. Two variants of the
Diffie-Hellman primitive are provided – one without the use of the co-factor h, the other using
the co-factor.

Input:
• a private key dA (A is the local party)
• a public key QB (B is the other party)

Compute:
P = [h]dAQB (where P is a point and h is the co-factor)
z = xp (where xp is the x coordinate of P)

Output: z, the shared value

3.5 MQV Primitive

The MQV primitive derives a shared secret value from two secret keys owned by the local party
(A) and two public keys owned by the other party (B). Note that in the schemes, the key pairs
defined below may be set to the same values.

Input:
• 2 key pairs for A – (d1,A, Q1,A) and (d2,A, Q2,A)
• 2 public keys for B –Q1,B and Q2,B

Compute:
implicitsigU = d2,U + (avf(Q2,U) × d1,U) (mod n)
P = h × implicitsigU × (Q2,V + (avf(Q2,V) × Q1,V))
z = xp

Output: z, the shared value.

3.6 Associate Value Function

The associate value function will be used to compute an integer associated with an elliptic curve
point. The integer is approximately half the length of the field elements associated with the
elliptic curve point.

Input:
• A valid set of domain parameters
• A point P ≠ a point at infinity

4

Compute:
xP’ = xP (mod 2f/2) (where f=log2n)
avf(P) = xP’ + 2f/2

Output: avf(P)

3.7 Cryptographic Hash Function

The crypographic hash functions are used to calculate the hash value associated with a bit string.
The functions are used by the key derivation function specified in Section 3.8. Any ANSI-
approved hash function that offers 80 bits of security or more may be used, i.e. any ANSI-
approved hash function whose output is 160 bits or more. Possibilities include the hash function
SHA-1 specified in ANSI X9.30, Part 2 (The Secure Hash Algorithm 1).

Input: A bit string Data

Compute: Hash = H(Data) (where H is the established hash function)

Output: Hash

3.8 Key Derivation Function (kdf)

The key derivation function is used by the key agreement schemes to compute keying data from
a shared secret value. The key derivation function will also be used by the asymmetric
encryption schemes. The key derivation function is a simple construction based on a hash
function.

Input:
• Shared value z
• Key length keydatalen
• Optional SharedInfo

Compute:
Set counter = 1
For i = 1 to j = keydatalen/hashlen , do:

Hashi = H(Z || counter || [SharedInfo])
Increment counter
Increment i

Let HHashj denote Hashj if keydatalen/hashlen is an integer, and let it denote the
(keydatalen - (hashlen×j)) leftmost bits of Hashj otherwise

Set KeyData = Hash1||Hash2||…||Hashj-1||HHashj

Output: KeyData

5

3.9 MAC Scheme

A tagging transformation and tag checking transformation is associated with the message
authentication code (MAC) scheme. The MAC scheme is used by some key agreement schemes
to provide key confirmation, and by the augmented encryption scheme in Section XXXX???.
Any ANSI-approved MAC that offers 80 bits of security or more may be used, i.e. any ANSI-
approved MAC that uses keys of length 80 bits or more and that outputs tags of length 80 bits or
more. Possibilities, therefore, include HMAC specified in ANSI X9.71, Keyed Hash Message
Authentication Code.

Input:
• A bit string Data to be MACed
• A bit string MacKey

Compute:
MacTag = MACMacKey(Data)

3.10 Asymmetric Encryption Scheme

The asymmetric encryption scheme is used as follows. The sender uses the encryption
transformation of the scheme to encrypt some data. The recipient, after being sent the encrypted
data, decrypts the encrypted data using the decryption transformation of the scheme. The
asymmetric encryption scheme is used by the key transport schemes.

3.10.1 Encryption Transformation

Input:
• Data to be encrypted of length datalen bits
• Public key of the recipient QB

• Two optional bit strings SharedData1 and SharedData2

Compute:
Generate (de, Qe)
z = dhp(de, QB)
EncKey || MacKey = kdf(z, datalen+mackeylen, [SharedData1])
MaskedEncData = Data ⊕ EncKey
Compute MacTag for MacData = MaskedEncData || [SharedData2]

Output: Qe || MaskedEncData || MacTag

3.10.2 Decryption Transformation

6

Input:
• EncryptedData = Qe’ || MaskedEncData’ || MacTag’
• Private key dB

• Two optional bit strings SharedData1 and SharedData2

Compute:
Validate Qe’
z = dhp(dB, Qe’)
EncKey || MacKey = kdf(z, maskedencdatalen+mackeylen, [SharedData1])
EncData = MaskedEncData’ ⊕ EncKey
Verify that MacTag’ is correct for MaskedEncData || [SharedData2] using MacKey

Output: Data

3.11 Signature Scheme

The signature scheme is used as follows. The sender uses the signing transformation to compute
a signature on some data. The recipient, after being sent the data and signature, checks the
validity of the signature using the verifying transformation. The signature scheme is used by the
3-pass key transport scheme specified in Section XXX. The signature scheme supported is the
Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA is specified in ANSI X9.62, The
Elliptic Curve Digital Signature Algorithm (ECDSA). The signature process produces two
integers: rsig and ssig.

4. Security Attributes

A number of security attributes may be provided by a particular key agreement or key transport
scheme. These attributes are:
• Implicit Key Authentication (IKA) – establishes the identity of the other party; provided by a

static key that is bound to the other party’s identity.
• Explicit Key Authentication (EKA) – knowledge that the other party did indeed calculate the

shared key; may be provided by doing key confirmation in a scheme that provides implicit
key authentication.

• Forward Secrecy (FS) – the assurance provided to an entity that the session key established
with another entity will not be compromised by the compromise of either entity's static
private key in the future; provided by the use of an ephemeral public key.

• Entity Authentication (EA) – consists of identification and “liveness”, whereas EKA is
concerned with identification and key possession. If explicit confirmation is deemed
adequate to demonstrate liveness, then it is possible for schemes that achieve EKA to also
support EA. Whether or not the two are synonymous depends upon the interpretations of
“entity” and “liveness”, and on the timespan for the protocol that realizes the key agreement
scheme. Therefore, the EA attribute does not follow automatically from EKA. ANSI X9.42

7

does not address entity authentication more specifically because EKA is neither always
necessary nor always sufficient to achieve EA.

• Known-Key Security (K-KS) – assurance that a particular session key will not be
compromised as a result of the compromise of other keys; provided by using an ephemeral
key to compute the key(s) for only one session.

• Unknown Key-share Resilience (U-KS) – assurance provided to one party (A) that if party A
and party B share a session key, then party B does not mistakenly believe the session key is
shared with an entity other than party A.
Key-Compromise Impersonation Resilience (K-CI) – assurance provided to a party (A) that,
even if an adversary somehow obtains party A’s static private key, the adversary cannot
successfully impersonate another party to party A.

5. Key Agreement Schemes

In the following schemes, the initiator is party U, and the responder is party V. The acquisition of
static public keys is outside the scope of ANSI X9.63, but is required for the key establishment
process. These acquisitions are shown as “dashed arrows”.

5.1 Ephemeral Unified Model

Ephemeral parameters (qe, ae, be, Ge, ne, and he) are generated for the “system” (a community of
users). The hash function must be agreed upon.

This scheme corresponds to the dhEphem scheme in ANSI X9.42. The scheme provides Known-
key Security if explicit authentication of all session keys is supplied for all session keys.
Interactive communications are required, i.e., both parties must actively participate in the key
agreement process.

Party U Transmissions Party V
Generate ephemeral key
pair (de,U, Qe,U) using (qe, ae,
be, Ge, ne, and he)

Qe,U

——————————>

Validate Q’e,U

Qe,V

<——————————
Generate ephemeral key
pair (de,V, Qe,V) using (qe, ae,
be, Ge, ne, and he)

Validate Q’e,V

Compute the shared value
(Ze = dhp(de,U, Q’e,V)) using
(qe, ae, be, Ge, ne, and he):
Ze = [h]de,UQe,V

Compute the shared value
(Ze = dhp(de,V, Q’e,U)) using
(qe, ae, be, Ge, ne, and he):
Ze = [h]de,VQe,U

Determine the shared key:
KeyData = kdf(Ze,
keydatalen, [SharedData]

Determine the shared key:
KeyData = kdf(Ze,
keydatalen, [SharedData]

8

5.2 One Pass Diffie Hellman

Static parameters (q, a, b, G, n, and h) are generated for the “system” (a community of users).
Each entity that acts as a responder generates a static key pair (ds, Qs) using the static parameters.
The entities must agree upon a hash function.

This scheme corresponds to the dhOneFlow scheme of ANSI X9.42. The scheme provides
Implicit Key Authentication and Key Compromise Impersonation resilience to the initiator.
Interactive or store-and-forward communications (only one party actively participates) are
required.

Party U Transmissions Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −
Generate ephemeral key
pair (de,U, Qe,U) using (q, a,
b, G, n, and h)

Qe,U

——————————>

Validate Q’e,U

Compute the shared value
(Z = dhp(de,U, Q’s,V)) using
(q, a, b, G, n, and h):
Z=[h]de,UQs,V

Compute the shared value
(Z = dhp(ds,V, Q’e,U)) using
(q, a, b, G, n, and h):
Z=[h]ds,V Qe,U

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

5.3 Static Unified Model

Static parameters (qs, as, bs, Gs, ns, and hs) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the static parameters. The hash
function must be agreed upon.

This scheme corresponds to the dhstatic scheme of ANSI X9.42. The scheme provides Implicit
Key Authentication to both parties, and Unknown-Keyshare Resilience to both parties if
knowledge of the private key (also known as proof of possession) was checked during the
certification of the static public keys. Applications involving interactive or store-and-forward
communications or neither party online can be used.

9

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −
Compute the shared value
(Zs = dhp(ds,U, Qs,V)) using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,UQs,V

Determine the shared key:
KeyData = kdf(Zs,
keydatalen, [SharedData]

Notify V that U wants to
communicate

——————————>
Qs,U

− − − − − − − − − − − −>
Acquire U’s static public
key (Qs,U)
Compute the shared value
(Zs = dhp(ds,V, Qs,U)) using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,VQs,U

Determine the shared key:
KeyData = kdf(Zs,
keydatalen, [SharedData]

5.4 Combined Unified Model with Key Confirmation

This scheme is a hybrid of the Ephemeral Unified Model and the Static Unified Model schemes.
A MAC is used to provide Key Confirmation. This scheme provides an example of how key
confirmation could be provided.

Static and ephemeral parameters ((qs, as, bs, Gs, ns, and hs) and (qe, ae, be, Ge,ne, and he)) are
generated for the “system” (a community of users). Each entity generates a static key pair (ds,
Qs) using the static parameters.. The entities must determine the MAC scheme and hash function
to be used.

There is no corresponding scheme in ANSI X9.42. This scheme provides all security attributes
except Key Compromise Impersonation resilience to both parties. Interactive communications
are required.

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −
Generate ephemeral key
pair (de,U, Qe,U) using (qe, ae,
be, Ge,ne, and he)

Qe,U

——————————>

Validate Q’e,U

Qs,U

− − − − − − − − − − − − − >
Acquire U’s static public
key (Qs,U)

10

Generate ephemeral key
pair (de,V, Qe,V) using (qe, ae,
be, Ge, ne, and he)
Compute the shared value
(Zs = dhp(ds,V, Qs,U))using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,VQs,U

Determine MacKey =
kdf(Zs, mackeylen,
[SharedData1]
Create MacData1 = 02 || V
|| U || Qe,V || Q’e,U || [Text1]

Qe,V, [Text1], MacTag1

<——————————
Create MacTag1 =
MacMacKey(MacData1)

Validate Q’e,V

Compute the shared value
(Zs = dhp(ds,U, Qs,V)) using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,UQs,V

Determine MacKey =
kdf(Zs, mackeylen,
[SharedData]
Create MacData1 = 02 || V
|| U || Q’e,V || Qe,U || [Text1]
Verify that the received
MacTag1 is correct for
MacData1

Create MacData2 = 03 || U
|| V || Qe,U || Q’e,V || [Text2]
Create MacTag2 =
MacMacKey(MacData2)

[Text2], MacTag2

——————————>
Create MacData2 = 03 || U
|| V || Q’e,U || Qe,V || [Text2]
Verify that the received
MacTag2 is correct for
MacData2

Compute the shared value
(Ze = dhp(de,U, Q’e,V))using
(qe, ae, be, Ge,ne, and he):
Ze=[h]de,UQe,V

Compute the shared value
(Ze = dhp(de,V, Q’e,U)) using
(qe, ae, be, Ge,ne, and he):
Ze=[h]de,VQe,U

Determine the shared key:
KeyData = kdf(Ze,
keydatalen, [SharedData2]

5.5 One Pass Unified Model

11

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters. A hash
function must be agreed upon.

This scheme corresponds to the dhHybridOneFlow scheme of ANSI X9.42. The scheme
provides Implicit Key Authentication to both parties, Key-Compromise Impersonation resilience
to the initiator, and Unknown Key-Share Resilience to both parties when knowledge of the
private key is checked during the certification of the static public keys. Interactive or store-and-
forward communications are required.

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −
Generate ephemeral key
pair (de,U, Qe,U) using (q, a,
b, G, n, and h)

Qe,U

——————————>

Validate Q’e,U

Qs,U

− − − − − − − − − − − − − >
Acquire U’s static public
key (Qs,U)

Compute the shared value
(Ze = dhp(de,U, Qs,V)) using
(q, a, b, G, n, and h):
Ze=[h]de,UQs,V

Compute the shared value
(Ze = dhp(ds,V, Q’e,U)) using
(q, a, b, G, n, and h):
Ze=[h]de,VQ’e,U

Compute the shared value
(Zs = dhp(ds,U, Qs,V)) using
(q, a, b, G, n, and h):
Zs=[h]ds,UQs,V

Compute the shared value
(Zs = dhp(ds,V, Qs,U)) using
(q, a, b, G, n, and h):
Zs=[h]ds,V Qs,U

Z = Ze || Zs Z = Ze || Zs

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

5.6 Full Unified Model

Static and ephemeral parameters ((qs, as, bs, Gs, ns, and hs) and (qe, ae, be, Ge,ne, and he)) are
generated for the “system” (a community of users). Each entity generates a static key pair (ds,
Qs) using the static parameters. The hash function must be agreed upon.

This scheme corresponds to the dhHybrid2 scheme of ANSI X9.42. The scheme provides
Implicit Key Agreement to both parties, Known-Key Security and Forward Secrecy to both
parties if explicit authentication of all session keys is performed, and Unknown Keyshare
Resilience to both parties if knowledge of the private key was checked during the certification of
the static public keys. Interactive communications are required.

12

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −
Generate ephemeral key
pair (de,U, Qe,U)

Qe,U

——————————>
Validate Q’e,U

Qs,U

− − − − − − − − − − − − −>
Acquire U’s static public
key (Qs,U)

Qe,V

<——————————
Generate ephemeral key
pair (de,V, Qe,V) using (qe, ae,
be, Ge,ne, and he)

Validate Q’e,V using (qe, ae,
be, Ge,ne, and he)
Compute the shared value
(Ze = dhp(de,U, Q’e,V)) using
(qe, ae, be, Ge,ne, and he):
Ze=[h]de,UQe,V

Compute the shared value
(Ze = dhp(de,V, Q’e,U)) using
(qe, ae, be, Ge,ne, and he):
Ze=[h]de,V Q’e,U

Compute the shared value
(Zs = dhp(ds,U, Qs,V)) using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,UQs,V

Compute the shared value
(Zs = dhp(ds,V, Qs,U))using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,VQs,U

Z = Ze || Zs Z = Ze || Zs

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData]

5. 7 Full Unified Model with Key Confirmation

This scheme provides an example of how key confirmation could be provided to the Full Unified
Model.

Static and ephemeral parameters ((qs, as, bs, Gs, ns, and hs) and (qe, ae, be, Ge,ne, and he)) are
generated for the “system” (a community of users). Each entity generates a static key pair (ds,
Qs) using the static parameters. The entities must determine the MAC scheme and hash function
to be used.

Key Confirmation is not specified in ANSI X9.42. The scheme provides all security attributes
except Key Compromise Impersonation resilience to both parties. Interactive communications
are required.

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −

13

Generate ephemeral key
pair (de,U, Qe,U) using (qe, ae,
be, Ge,ne, and he)

Qe,U

——————————>

Validate Q’e,U

Qs,U

− − − − − − − − − − − − −>
Acquire U’s static public
key (Qs,U)
Generate ephemeral key
pair (de,V, Qe,V)
Compute the shared value
(Ze = dhp(de,V, Q’e,U)) using
(qe, ae, be, Ge,ne, and he):
Ze=[h]de,VQe,U

Compute the shared value
(Zs = dhp(ds,V, Qs,U)) using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,VQs,U

Z = Ze || Zs

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
mackeylen + keydatalen,
[SharedData])
Create MacData1 = 02 || V
|| U || Qe,V || Qe,U || [Text1]

Qe,V, [Text1], MacTag1

<——————————
Create MacTag1 =
MacMacKey(MacData1)

Validate Q’e,V

Compute the shared value
(Ze = dhp(de,U, Q’e,V))using
(qe, ae, be, Ge,ne, and he):
Ze=[h]de,UQe,V

Compute the shared value
(Zs = dhp(ds,U, Qs,V))using
(qs, as, bs, Gs, ns, and hs):
Zs=[h]ds,UQs,V

Z = Ze || Zs

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
mackeylen + keydatalen,
[SharedData])
Create MacData1 = 02 || V
|| U || Q’e,V || Qe,U || [Text1]
)
Verify that the received
MacTag1 is correct for

14

MacData1

Create MacData2 = 03 || U
|| V || Qe,U || Q’e,V || [Text2]
Create MacTag2 =
MacMacKey(MacData2)

[Text2], MacTag2

——————————>
Create MacData2 = 03 || U
|| V || Q’e,U || Qe,V || [Text2]
Verify that the received
MacTag2 is correct for
MacData2

5.8 Station-to-Station

The system parameters ((qe, ae, be, Ge, ne, he)) and ((qsig, asig, bsig, Gsig, nsig, hsig)) are generated for
the “system” (a community of users). Each entity generates a signature key pair (dsig, Qsig) using
the system parameters (qsig, asig, bsig, Gsig, nsig, hsig). The entities must agree on the MAC scheme
and hash function to be used.

There is no corresponding scheme in ANSI X9.42. This scheme provides all security attributes to
both parties. Interactive communications are required.

Party U Transmission Party V
Acquire V’s signature key
(Qsig,V)

Qsig,V

<− − − − − − − − − − − − −
Generate ephemeral key
pair (de,U, Qe,U) using (qe, ae,
be, Ge, ne, and he)

Qe,U

——————————>

Validate Q’e,U

Qsig,U

− − − − − − − − − − − − −>
Acquire U’s signature key
(Qsig,U)
Generate ephemeral key
pair (de,V, Qe,V) using (qe, ae,
be, Ge, ne, and he)
Compute the shared value
(Ze = dhp(de,V, Q’e,U)) using
(qe, ae, be, Ge, ne, and he):
Ze=[h]de,V Qe,U

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Ze,
mackeylen+datakeylen,
[SharedData])
Construct Data1 = Qe,V ||
Q’e,U || U || [Text1]
Sign Data1 using dsig,V, (qe,

15

ae, be, Ge, ne, he), obtaining
rsig1 and ssig1

Qe,V, rsig1, ssig1, [Text1],
MacTag1

<——————————

Calculate MacTag1 =
MacMacKey(Data1))

Validate Q’e,V using (qe, ae,
be, Ge, ne, he)
Construct Data1 = Q’e,V ||
Qe,U || U || Text’1

Verify that rsig’1 and ssig’1

are valid for Data1 using
Qsig,V, (qsig, asig, bsig, Gsig,
nsig, hsig)
Compute the shared value
(Ze = dhp(de,U, Q’e,V)) using
(qe, ae, be, Ge, ne, and he):
Ze=[h]de,UQe,V

Determine the MAC key
and the shared key:
Mackey||KeyData = kdf(Ze,
mackeylen+keydatalen,
[SharedData])
Verify that the received
MacTag’1 is correct for
Data1 using 5.7.2
Construct Data2 = Qe,U ||
Q’e,V || V || [Text2]
Sign Data2 using dsig,U, (qsig,
asig, bsig, Gsig, nsig, hsig),
obtaining rsig1 and ssig2

Calculate MacTag2 =
MacMacKey(Data2)

rsig2, ssig2, [Text2],
MacTag2

——————————>
Construct Data2 = Q’e,U ||
Qe,V || V || [Text’2]
Verify that rsig’2 and ssig’2

are valid for Data2 using
Qsig,U, (qsig, asig, bsig, Gsig,
nsig, hsig)
Verify that the received
MacTag’2 is correct for
Data2

5.9 One Pass MQV

16

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters. The entities
must agree on a hash function to be used.

This scheme corresponds to the MQV1 scheme in ANSI X9.42. The scheme provides Implicit
Key Authentication to both parties, and Key Compromise Impersonation resilience to the
initiator. Interactive or store-and-forward communications may be used.

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −
Generate ephemeral key
pair (de,U, Qe,U) using (q, a,
b, G, n, and h)

Qe,U

——————————>

Validate Q’e,U using (q, a,
b, G, n, and h)

Qs,U

− − − − − − − − − − − − −>
Acquire U’s static public
key (Qs,U)

Compute the shared value
(Z = mqvp((ds,U, Qs,U), (de,U,

Qe,U), Qs,V) using (q, a, b, G,
n, and h):
implicitsigU=de,U+avf(Qe,U)
ds,U

R=h×implicitsigU×(Qs,V+avf
(Qs,V)×Qs,V)
Z=xR

Compute the shared value
(Z = mqvp((ds,V, Qs,V), Qe,,U,
Qs,U) using (q, a, b, G, n,
and h):
implicitsigV=ds,V+avf(Qs,V)
ds,V

R=h×implicitsigV×(Qe,U+
avf(Qe,U)×Qs,U)
Z=xR

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData])

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData])

5.10 Full MQV

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters.

This scheme corresponds to the MQV2 scheme in ANSI X9.42. The scheme provides Implicit
Key Agreement, Known-Key Security and Key Compromise Impersonation resilience to both
parties, and Forward Secrecy to both parties if explicit authentication is supplied for all session
keys. Interactive communications are required.

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − −

17

Generate ephemeral key
pair (de,U, Qe,U) using (q, a,
b, G, n, and h)

Qe,U

——————————>

Validate Q’e,U using (q, a, b,
G, n, and h)

Qs,U

− − − − − − − − − − −>
Acquire U’s static public
key (Qs,U)

Qe,V

<—————————
Generate ephemeral key
pair (de,V, Qe,V) using (q, a,
b, G, n, and h)

Validate Q’e,V

Compute the shared value
(Z = mqvp((ds,U, Qs,U), (de,U,

Qe,U), Qs,V, Q’e,V) using (q,
a, b, G, n, and h):
implicitsigU=de,U+avf(Qe,U)
ds,U

R=h×implicitsigU×(Qe,V+
avf(Qe,V)×Qs,V)
Z=xR

Compute the shared value
(Z = mqvp((ds,V, Qs,V), (de,V,

Qe,V), Qs,U,Qe,U) using (q, a,
b, G, n, and h):
implicitsigV=de,V+avf(Qe,V)
ds,V

R=h×implicitsigV×(Qe,U+
avf(Qe,U)×Qs,U)
Z=xR

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData])

Determine the shared key:
KeyData = kdf(Z,
keydatalen, [SharedData])

5.11 Full MQV with Key Confirmation

This scheme provides an example of how Key Confirmation could be provided for the Full MQV
scheme.

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity generates a static key pair (ds, Qs) using the system parameters. The entities
must determine the MAC scheme and the hash function to be used.

This scheme provides all security attributes to both parties. Interactive communications are
required.

Party U Transmission Party V
Acquire V’s static public
key (Qs,V)

Qs,V

<− − − − − − − − − − − − −
Generate ephemeral key
pair (de,U, Qe,U) using (q, a,
b, G, n, and h)

Qe,U

——————————>

Validate Q’e,U

Qs,U

− − − − − − − − − − − − −>
Acquire U’s static public
key (Qs,U)

18

Generate ephemeral key
pair (de,V, Qe,V) using (q, a,
b, G, n, and h)
Compute the shared value
(Z = mqvp((ds,V, Qs,V), (de,V,
Qe,V),Qs,U, Q’e,U)) using (q,
a, b, G, n, and h):
implicitsigV=de,V+avf(Qe,V)
ds,V

R=h×implicitsigV×(Qe,U+
avf(Qe,U)×Qs,U)
Z=xR

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
macdatalen + keydatalen,
[SharedData])
Create MacData1 = 02 || V
|| U || Qe,V || Q’e,U || [Text1]

Qe,V, [Text1], MacTag1

<——————————
Create MacTag1 =
MacMacKey(MacData1)

Validate Q’e,V

Compute the shared value
(Z = mqvp((ds,U, Qs,U), (de,U,
Qe,U),Qs,V, Q’e,V)) using (q,
a, b, G, n, and h):
implicitsigU=de,U+avf(Qe,U)
ds,U

R=h×implicitsigU×(Qe,V+
avf(Qe,V)×Qs,V)
Z=xR

Determine the MAC key
and the shared key:
MacKey||KeyData = kdf(Z,
mackeylen + keydatalen,
[SharedData])
Create MacData1 = 02 || B
|| A || Qe,V || Qe,U || [Text1]
Verify that the received
MacTag1 is correct for
MacData1

Create MacData2 = 03 || U
|| V || Qe,U || Q’e,V || [Text2]
Create MacTag2 =
MacMacKey(MacData2)

[Text2], MacTag2

——————————>
Create MacData2 = 03 || U

19

|| V || Q’e,U || Qe,V || [Text2]
Verify that the received
MacTag2 is correct for
MacData2

6. Key Transport Schemes

No scheme is provided in ANSI X9.42 for key transport.

6.1 One Pass Transport

The system parameters (q, a, b, G, n, and h) are generated for the “system” (a community of
users). Each entity who may act as a responder generates a static encryption key pair (denc, Qenc)
using the system parameters and is bound to that key pair (e.g., by a certificate). Each entity who
may act as an initiator must be bound to a unique identifier (e.g., in a certificate). The entities
must also determine the hash function to be used.

This scheme provides Implicit Key Authentication and Key Compromise Impersonation
resilience for the initiator (U) only. Interactive or store-and-forward communications may be
used.

Party U Transmission Party V
Acquire V’s static public
encryption key (Qenc,V)

Qenc,B

<− − − − − − − − − − − −
Form the data to be
encrypted: EncData = U ||
KeyData || [Text]
Encrypt EncData with V’s
public key : EncryptedData
= EQenc,V

(EncData, [SharedData1],
[SharedData2]))

EncryptedData
——————————>

Decrypt Encrypted Data
using denc,V to get EncData
Parse the initiator’s identity
(U) and KeyData from
EncData
Verify that EncryptedData
was received from U

6.2 Three Pass Key Transport

20

The system encryption and signature parameters ((qenc, aenc, benc, Genc, nenc, henc) and (qsig, asig,
bsig, Gsig, nsig, hsig)) are generated for the “system” (a community of users). Each entity generates
a signature key pair (dsig, Qsig) using the system parameters. Each entity who may act as an
initiator generates an encryption key pair (denc, Qenc) using the system parameters. The entities
must also determine the hash function and challenge length to be used.

This scheme provides Implicit Key Authentication, Explicit Key Authentication, Entity
Authentication, Key Compromise Impersonation resilience and Unknown Key-share resilience to
both parties, and Known-Key Security to both parties when used in conjunction with the elliptic
curve augmented encryption scheme. Interactive communications are required.

Party U Transmission Party V
Acquire V’s signature and
encryption public keys

Qsig,V, Qenc,V

<− − − − − − − − − − − − −
Generate a challenge
(ChallengeU)

ChallengeU

——————————>
Verify that ChallengeU is
the correct length

Qsig,U, Qenc,U

− − − − − − − − − − − − −>
Acquire U’s signature and
encryption public keys
Generate ChallengeV

Create EncData = V ||
KeyData || [Text1]
Encrypt EncData and,
optionally, SharedData1

and SharedData2 using
Qenc,U , (qenc, aenc, benc, Genc,
nenc, henc): EncryptedData =
EQenc,U(EncData ||
[SharedData1] ||
[SharedData2]
Create SignData1 =
ChallengeV || ChallengeU’ ||
U || EncryptedData ||
[Text1])

ChallengeV, EncryptedData,
[Text1], rsig1, ssig1

<——————————

Sign SignData1 using dsig,V

and (qsig, asig, bsig, Gsig, nsig,
hsig) to get rsig1 and ssig1

Verify that the received
ChallengeV is the correct
length
Decrypt EncryptedData
using (qenc, aenc, benc, Genc,
nenc, henc) and denc,U to
obtain EncData
Parse V’s identity and

21

KeyData from EncData
Verify that EncryptedData
was received from V
Create SignData1 =
ChallengeV’ || ChallengeU ||
U || EncryptedData ||
[Text1]
Verify that the received
rsig1’and ssig1’are valid for
SignData1 using Qsig,V, (qsig,
asig, bsig, Gsig, nsig, hsig)

Create SignData2 =
ChallengeU || ChallengeV’ ||
V || [Text2]
Sign SignData2 using dsig,U

and (qsig, asig, bsig, Gsig, nsig,
hsig) to get rsig2 and ssig2

Text2, rsig2, ssig2

——————————>

Create SignData2 =
ChallengeU’ || ChallengeV ||
V || [Text2]
Verify that the received
rsig2’ and ssig2’ are valid
for SignData2 using Qsig,U

and (qsig, asig, bsig, Gsig, nsig,
hsig)

